Nitric oxide donor induces temporal and dose-dependent reduction of gene expression in human endothelial cells.
نویسندگان
چکیده
The present study tested the hypothesis that acute increases in nitric oxide (NO) exert substantial influences on gene transcription in endothelial cells (ECs) via guanylyl cyclase (GC). Human umbilical veins ECs (HUVECs) were exposed to 0.1, 1, and 10 mM of sodium nitroprusside (SNP) for 4 h and to 1 mM SNP or 250 microM of (Z)-1[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) for 2, 4, 8, and 24 h. Also, cells were exposed to DETA-NONOate in the presence and absence of the GC inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 10 microM) for 4 h. RNA was isolated, reverse transcribed, Cy3 and Cy5 labeled, and analyzed using cDNA microarrays. Increasing doses of SNP predominantly depressed gene expression in HUVECs. Gene function was related to growth, adhesion, and cell structure. DETA-NONOate evoked a wave of expression changes (maximum at 4 h), with a remarkable downregulation of the transcription factors MSX1, RELB, and Egr-1. Both SNP- and DETA-NONOate-induced gene expression had faded after 24 h, despite continued elevation of cGMP in the medium. Coadministration of ODQ decreased many, but not all, of the transcriptional responses to DETA-NONOate. NO pronouncedly depressed EC gene expression, in particular of transcription factors. The observation that many, but not all, transcriptional changes induced by NO could be inhibited by inhibition of GC indicates the presence of GC-independent NO actions on gene expression. Thus EC gene expression responds to NO; however, the transcriptional response fades during prolonged exposure. This could allow the EC to respond to increased shear, without vigorous changes in gene expression.
منابع مشابه
EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملPerlecan deficiency causes endothelial dysfunction by reducing the expression of endothelial nitric oxide synthase
Perlecan is a major heparan sulfate proteoglycan found in the subendothelial extracellular matrix of the vascular wall. The aim of this study was to investigate the role of perlecan in the regulation of vascular tone. A previously developed conditional perlecan-deficient mouse model was used to measure changes in the isometric force of isolated aortic rings. The vessels were first precontracted...
متن کاملEffect of dexamethasone on the endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes expression during hepatic warm ischemia/reperfusion in rat
Background: Hepatic ischemia/reperfusion injury (I/RI) is a multifactorial pathophysiologic process which can lead to liver damage and dysfunction. This study examined the protective effect of dexamethasone on the gene expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) and on the liver tissue damage during warm hepatic I/R. Materials and Methods: A total of 32 mal...
متن کاملThe effect of 17β-estradiol on gene expression of calcitonin gene-related peptide and some pro-inflammatory mediators in peripheral blood mononuclear cells from patients with pure menstrual migraine
Objective(s):The neuropeptide calcitonin gene-related peptide (CGRP) has long been postulated to play an integral role in the pathophysiology of migraine. Earlier studies showed that CGRP can stimulate the synthesis and release of nitric oxide (NO) and cytokines from trigeminal ganglion glial cells. The purpose of this study was to determine the effect of 17β-estradiol in regulation of CGRP exp...
متن کاملEffect of the Sera of Patients with Multiple Sclerosis on Apoptosis and Nitric Oxide Production of Endothelial Cells
Background & Aims: Multiple sclerosis (MS) is one of the chronic autoimmune diseases of the central nervous system with unknown etiology. The present study aimed to investigate the apoptosis and nitric oxide (NO) production of endothelial cells treated with serum of patients with MS and response to interferon beta (IFN- ) therapy. Methods: Human umbilical vein endothelial cells were treated wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 5 شماره
صفحات -
تاریخ انتشار 2004